Discover how federated learning enables secure AI applications across automotive, defence, and cybersecurity while preserving data privacy.
This video explains federated machine learning with a simple example for non-technical audiences.
It emphasizes privacy preservation as a main benefit and explores other advantages for various industries.
It discusses the need for federated learning, its basic mechanics, and additional benefits beyond privacy.
We are happy to serve a diverse range of federated learning use cases. This section highlights a few of the organizations we've had the privilege of working with.
YOLO object detection models can be integrated with federated learning to enable privacy-preserving machine learning across distributed devices. This combination allows for real-time object detection while keeping sensitive data local, making it ideal for applications like autonomous vehicles, medical imaging, and manufacturing quality control.
Read more »
YOLO object detection models can be integrated with federated learning to enable privacy-preserving machine learning across distributed devices. This combination allows for real-time object detection while keeping sensitive data local, making it ideal for applications like autonomous vehicles, medical imaging, and manufacturing quality control.
This post explains using Optuna to optimize the server-side learning rate of FedAdam in FEDn. It covers defining an objective function, tuning hyperparameters, and automating the process to improve model performance.
Mycronic is enhancing its semiconductor Pick and Place (PnP) machines with AI, but the effectiveness of these algorithms relies on access to large, sensitive data sets owned by their customers.