Enable ML in complex environments

Medical AI
Value
There is a large potential in using AI in medicine. Use case include digital pathology, segmentation of organs and tumor, and detecting anomalies in time series data. Today doctors manually generate annotated training data. The software needs to learn from this user generated data to improve machine learning models. Without the data, they do not reach the required scale of data to train high performing models.
Data challenges
The problem is that the data is sensitive, owned by the customers, and subject to health data regulations. Data cannot be be moved off site and shared, and cannot be used effectively to improve AI software. Single clinics struggle with obtaining diverse enough data in large enough quantities. Anonymization and pooling of data is both costly, time consuming, and risks reducing data utility.
Federated learning
With federated learning the regulatory challenge can be addressed and no data is moved off site. Without sharing the data, learnings from multiple clinics can be integrated to improve the machine learning models.

Learn more: Itea Assist